
A Brief Correction of 2015 Session

The answer may be wrong or have some errors.

Qusetion 1:
Let a1, ..., an be strictly positive real numbers, σ a permutation of {1, .., n}. Prove that

n∑
i=1

ai
aσ(i)

≥ n

A. Without loss of generality, one may assume that a1 ≥ ... ≥ an. If n = 2, one can easily verify
the inequality. Suppose that the inequality is verified for all n < m. For the case n = m, we
distinguish two subcases:
(1) σ(n) = n. In this subcase we may directly apply the hypothesis of induction to conclude.
(2) σ(n) = i < n. Let j such that σ(j) = n. In this case we have

an
ai

+
aj
an

≥ an
an

+
aj
ai

.

We define ϕ(k) = σ(k) if k ̸= j, n and ϕ(n) = n, ϕ(j) = i. Then we have
n∑

i=1

ai
aσ(i)

≥
n∑

i=1

ai
aϕ(i)

≥ n

by induction’s hypothesis, which ends the induction.

A. Another way is to observe that

ln( 1
n

n∑
i=1

ai
aσ(i)

) ≤ 1

n

n∑
i=1

ln( ai
aσ(i)

) = 0.

and therefore
n∑

i=1

ai
aσ(i)

≥ n.

Qusetion 2:
Let C1 and C2 be two circles, that intersect at two points A and B. Let δ be a straight line, tangent to
both circles respectively at two points M and N . Prove that the line (AB) intersects the line segment
[MN ] at its midpoint.

A. Let O1 and O2 the center of each circle, H the intersection of (AB) and [MN ] and P the
intersection of [AB] and [O1O2]. Then one has

MH2 = HP 2 +O1P
2 −O1M

2

= HP 2 −AP · PB

= HP 2 +O2P
2 −O2N

2

= NH2

and therefore H is the midpoint of [NM ].
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Qusetion 3:
Prove that the inequality sin(cosx) < cos(sinx) holds for every real number x.

A. We notice that cos(sinx) > 0 and each term is even, so we only need to study the case x ∈]0, π
2 [.

Or one has ∀x ∈]0, π
2 [, x > sinx, so

sin(cosx) < cosx < cos(sinx).

Qusetion 4:
Find all three-digit integers n such that the decimal expansion for n2 terminates with n.

A. Let 100a+ 10b+ c the decimal representation of n. Then it is easy to see that c ∈ {0, 1, 5, 6}.
Besides, n2 ≡ 100b2 + c + 2 + 20bc + 200ac ≡ 100a + 10b + c mod 1000 and a simple discussion
gives us n = 625, 376.

Qusetion 5:
Let (un)n≥0 a sequence of non-negative real numbers such that u0 = 1. Assume moreover that, for
every integer n ≥ 1, at least half of terms u0, ..., un−1 are bigger than or equal to 2un. Prove that
(un)n≥0 converge to 0.

A. It is easy to see that ∀i, ui ≤ u0 = 1. Therefore, the sequence ∀i, vi = supk≥i uk is well defined.
one can see that this sequence (vi) is decreasing and ”greater” than (ui): ∀i, vi ≥ vi+1 and vi ≥ ui.
Let (wi) be a sequence defined by w0 = 1,∀i, wi+1 = 1

2w i−1
2

if i is odd and 1
2w i

2
if not. It is not

difficult to prove by induction that (wi) is decreasing, greater than (vi) and ∀i ≥ 1, w2i =
1
2i . Since

(wi) converge to zero, (un) converge to zero.

Qusetion 6:
(a) Find a continuous function f : R → R such that for every y ∈ R, the equation f(x) = y has exactly
three solutions.
(b) Is it possible to find a continuous function f : R → R such that for every y ∈ R, the equation
f(x) = y has exactly two solutions?

A. (a) Let

f(x) = (x− 3k) + k ∀x ∈ [3k, 3k + 1]

= −(x− 3k) + 2 + k ∀x ∈ [3k + 1, 3k + 2]

= (x− 3k)− 2 + k ∀x ∈ [3k + 2, 3k + 3]

It is easy to see that this function answers to the question.
(b) It is impossible. Suppose that such a function f exists. Let a ̸= b be solutions of f(x) = 0.
Without loss of generality we may assume that ∀x ∈]a, b[, f(x) > 0. Let ϵ > 0 be close enough to
zero. Then f(x) = ϵ has exactly two solutions (one around a and the other one around b). However
this is contradictory since for a great enough y there is no solution between ]a, b[ for f(x) = y.
Therefore there must be a solution < a or > b for this equation, but then f(x) = ϵ has another
distinct solution, which is once moreover contradictory. Thus, such a function doesn’t exist.

Qusetion 7:
A balanced coin is tossed n times, and we let F be the number of ”heads” and P the number of ”tails”
obtained.
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(a) Prove that the expectation (i.e the average) of |F − P | equals

1

2n−1

∑
k<n

2

(n− 2k)

(
n

k

)
(b) Find a simple expression for the value of this sum whenever n = 2p.

A. (a)One has

E(|F − P |) =
n∑

k=0

|k − (n− k)|P(F = k, P = n− k)

=
∑
k<n

2

(n− 2k)(P(F = k, P = n− k) + P(F = n− k, P = k))

=
∑
k<n

2

(n− 2k)
1

2n−1

(
n

k

)
(b) If n = 2, then E(|F − P |) = 1. If n = 2p with p ≥ 2, then

E(|F − P |) =
∑
k<n

2

(n− 2k)
1

2n−1

(
n

k

)

=
∑
k<n

2

(2n− 2k)
1

2n−1

(
n

k

)
−

∑
k<n

2

(n)
1

2n−1

(
n

k

)

=
∑

1≤k<n
2

(n− k)
2

2n−1
(n)

(
n− 1

k

)
−

∑
1≤k<n

2

(n)
1

2n−1
(

(
n− 1

k

)
+

(
n− 1

k − 1

)
) +

n

2n−1

=
∑

1≤k<n
2

(n− k)
2

2n−1
(n)(

(
n− 1

k

)
−

(
n− 1

k − 1

)
) +

n

2n−1

=
n

2n−1
(

(
n− 1
n
2 − 1

)
− 1 + 1)

=
n

2n−1

(
n− 1
n
2 − 1

)
Qusetion 8:
Find all non-decreasing functions f : N∗ → R∗

+ such that

∀(k,m) ∈ (N∗)2, f(mk) = f(m)k

A. Immediately we see that f(1) = 1. If there is m ≥ 2 such that f(m) = 1, then we see that
∀n, f(n) = 1. In the following we assume that ∀n ≥ 2, f(n) > 1. If

∃p > q, x = ln(f(p)) ̸= ln(f(q)) = y,

since f is non-decreasing, we have x ≥ y. We choose a rational number m = a
b such that

1 ≤ x

y
< m <

ln(p)
ln(q) .

Then we have qa < pb and f(qa) = eya > exb = f(pb) which is contradictory. Thus we conclude
that ∀n, f(n) = nx with x ≥ 0.

Qusetion 9:
Let Γ be a circle with center O, and A1, .., An be points on Γ. What is the probability that O belongs
to the convex hull of A1, .., An?
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A. We suppose that n ≥ 3. First let’s see the case n = 3. We see that O doesn’t belong to the
triangle if and only if it is obtuse. The greatest angle is ≥ π

3 , so the probability of a triangle being
obtuse is

π
2
2π
3

=
3

4
.

Thus the probability of O belonging to the triangle is 1
4 , which is also the probability of the greatest

angle being acute (≤ π
2 ).

Now let’s go back to the general case. We see that these n points divide 2π into n angles, so the
biggest angle is ≥ 2π

n . O is not in the convex hull if and only if the biggest angle is > π.
Therefore the probability that O belongs to the convex hull of A1, .., An is

1− π

2π − 2π
n

=
n− 2

2n− 2
.
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