A Brief Correction of 2015 Session

The answer may be wrong or have some errors.

Qusetion 1:

Let $a_1, ..., a_n$ be strictly positive real numbers, σ a permutation of $\{1, ..., n\}$. Prove that

$$\sum_{i=1}^{n} \frac{a_i}{a_{\sigma(i)}} \ge n$$

A. Without loss of generality, one may assume that $a_1 \ge ... \ge a_n$. If n = 2, one can easily verify the inequality. Suppose that the inequality is verified for all n < m. For the case n = m, we distinguish two subcases:

(1) $\sigma(n) = n$. In this subcase we may directly apply the hypothesis of induction to conclude.

(2) $\sigma(n) = i < n$. Let j such that $\sigma(j) = n$. In this case we have

$$\frac{a_n}{a_i} + \frac{a_j}{a_n} \ge \frac{a_n}{a_n} + \frac{a_j}{a_i}.$$

We define $\phi(k) = \sigma(k)$ if $k \neq j, n$ and $\phi(n) = n, \phi(j) = i$. Then we have

$$\sum_{i=1}^{n} \frac{a_i}{a_{\sigma(i)}} \ge \sum_{i=1}^{n} \frac{a_i}{a_{\phi(i)}} \ge n$$

by induction's hypothesis, which ends the induction.

A. Another way is to observe that

$$\ln(\frac{1}{n}\sum_{i=1}^{n}\frac{a_{i}}{a_{\sigma(i)}}) \le \frac{1}{n}\sum_{i=1}^{n}\ln(\frac{a_{i}}{a_{\sigma(i)}}) = 0.$$

and therefore

$$\sum_{i=1}^{n} \frac{a_i}{a_{\sigma(i)}} \ge n.$$

Qusetion 2:

Let C_1 and C_2 be two circles, that intersect at two points A and B. Let δ be a straight line, tangent to both circles respectively at two points M and N. Prove that the line (AB) intersects the line segment [MN] at its midpoint.

A. Let O_1 and O_2 the center of each circle, H the intersection of (AB) and [MN] and P the intersection of [AB] and $[O_1O_2]$. Then one has

$$MH^{2} = HP^{2} + O_{1}P^{2} - O_{1}M^{2}$$
$$= HP^{2} - AP \cdot PB$$
$$= HP^{2} + O_{2}P^{2} - O_{2}N^{2}$$
$$= NH^{2}$$

and therefore H is the midpoint of [NM].

Qusetion 3:

Prove that the inequality $\sin(\cos x) < \cos(\sin x)$ holds for every real number x.

A. We notice that $\cos(\sin x) > 0$ and each term is even, so we only need to study the case $x \in]0, \frac{\pi}{2}[$. Or one has $\forall x \in]0, \frac{\pi}{2}[, x > \sin x]$, so

$$\sin(\cos x) < \cos x < \cos(\sin x).$$

Qusetion 4:

Find all three-digit integers n such that the decimal expansion for n^2 terminates with n.

A. Let 100a + 10b + c the decimal representation of n. Then it is easy to see that $c \in \{0, 1, 5, 6\}$. Besides, $n^2 \equiv 100b^2 + c + 2 + 20bc + 200ac \equiv 100a + 10b + c \mod 1000$ and a simple discussion gives us n = 625, 376.

Qusetion 5:

Let $(u_n)_{n\geq 0}$ a sequence of non-negative real numbers such that $u_0 = 1$. Assume moreover that, for every integer $n \geq 1$, at least half of terms $u_0, ..., u_{n-1}$ are bigger than or equal to $2u_n$. Prove that $(u_n)_{n\geq 0}$ converge to 0.

A. It is easy to see that $\forall i, u_i \leq u_0 = 1$. Therefore, the sequence $\forall i, v_i = \sup_{k \geq i} u_k$ is well defined. one can see that this sequence (v_i) is decreasing and "greater" than (u_i) : $\forall i, v_i \geq v_{i+1}$ and $v_i \geq u_i$. Let (w_i) be a sequence defined by $w_0 = 1, \forall i, w_{i+1} = \frac{1}{2}w_{\frac{i-1}{2}}$ if *i* is odd and $\frac{1}{2}w_{\frac{i}{2}}$ if not. It is not difficult to prove by induction that (w_i) is decreasing, greater than (v_i) and $\forall i \geq 1, w_{2^i} = \frac{1}{2^i}$. Since (w_i) converge to zero, (u_n) converge to zero.

Qusetion 6:

(a) Find a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that for every $y \in \mathbb{R}$, the equation f(x) = y has exactly three solutions.

(b) Is it possible to find a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that for every $y \in \mathbb{R}$, the equation f(x) = y has exactly two solutions?

$$f(x) = (x - 3k) + k \qquad \forall x \in [3k, 3k + 1]$$

= $-(x - 3k) + 2 + k \ \forall x \in [3k + 1, 3k + 2]$
= $(x - 3k) - 2 + k \quad \forall x \in [3k + 2, 3k + 3]$

It is easy to see that this function answers to the question.

(b) It is impossible. Suppose that such a function f exists. Let $a \neq b$ be solutions of f(x) = 0. Without loss of generality we may assume that $\forall x \in]a, b[, f(x) > 0$. Let $\epsilon > 0$ be close enough to zero. Then $f(x) = \epsilon$ has exactly two solutions (one around a and the other one around b). However this is contradictory since for a great enough y there is no solution between]a, b[for f(x) = y. Therefore there must be a solution < a or > b for this equation, but then $f(x) = \epsilon$ has another distinct solution, which is once moreover contradictory. Thus, such a function doesn't exist.

Qusetion 7:

A balanced coin is tossed n times, and we let F be the number of "heads" and P the number of "tails" obtained.

(a) Prove that the expectation (i.e the average) of $\left|F-P\right|$ equals

$$\frac{1}{2^{n-1}}\sum_{k<\frac{n}{2}}(n-2k)\binom{n}{k}$$

(b) Find a simple expression for the value of this sum whenever n = 2p.

A. (a)One has

$$\begin{split} \mathbb{E}(|F-P|) &= \sum_{k=0}^{n} |k - (n-k)| \mathbb{P}(F=k, P=n-k) \\ &= \sum_{k < \frac{n}{2}} (n-2k) (\mathbb{P}(F=k, P=n-k) + \mathbb{P}(F=n-k, P=k)) \\ &= \sum_{k < \frac{n}{2}} (n-2k) \frac{1}{2^{n-1}} \binom{n}{k} \end{split}$$

(b) If n = 2, then $\mathbb{E}(|F - P|) = 1$. If n = 2p with $p \ge 2$, then

$$\begin{split} \mathbb{E}(|F-P|) &= \sum_{k < \frac{n}{2}} (n-2k) \frac{1}{2^{n-1}} \binom{n}{k} \\ &= \sum_{k < \frac{n}{2}} (2n-2k) \frac{1}{2^{n-1}} \binom{n}{k} - \sum_{k < \frac{n}{2}} (n) \frac{1}{2^{n-1}} \binom{n}{k} \\ &= \sum_{1 \le k < \frac{n}{2}} (n-k) \frac{2}{2^{n-1}} (n) \binom{n-1}{k} - \sum_{1 \le k < \frac{n}{2}} (n) \frac{1}{2^{n-1}} (\binom{n-1}{k} + \binom{n-1}{k-1}) + \frac{n}{2^{n-1}} \\ &= \sum_{1 \le k < \frac{n}{2}} (n-k) \frac{2}{2^{n-1}} (n) (\binom{n-1}{k} - \binom{n-1}{k-1}) + \frac{n}{2^{n-1}} \\ &= \frac{n}{2^{n-1}} (\binom{n-1}{\frac{n}{2}-1} - 1 + 1) \\ &= \frac{n}{2^{n-1}} \binom{n-1}{\frac{n}{2}-1} \end{split}$$

Qusetion 8:

Find all non-decreasing functions $f:\mathbb{N}^*\to\mathbb{R}^*_+$ such that

$$\forall (k,m) \in (\mathbb{N}^*)^2, f(m^k) = f(m)^k$$

A. Immediately we see that f(1) = 1. If there is $m \ge 2$ such that f(m) = 1, then we see that $\forall n, f(n) = 1$. In the following we assume that $\forall n \ge 2, f(n) > 1$. If

$$\exists p > q, x = \ln(f(p)) \neq \ln(f(q)) = y,$$

since f is non-decreasing, we have $x \ge y$. We choose a rational number $m = \frac{a}{b}$ such that

$$1 \le \frac{x}{y} < m < \frac{\ln(p)}{\ln(q)}.$$

Then we have $q^a < p^b$ and $f(q^a) = e^{ya} > e^{xb} = f(p^b)$ which is contradictory. Thus we conclude that $\forall n, f(n) = n^x$ with $x \ge 0$.

Qusetion 9:

Let Γ be a circle with center O, and $A_1, ..., A_n$ be points on Γ . What is the probability that O belongs to the convex hull of $A_1, ..., A_n$?

A. We suppose that $n \ge 3$. First let's see the case n = 3. We see that O doesn't belong to the triangle if and only if it is obtuse. The greatest angle is $\ge \frac{\pi}{3}$, so the probability of a triangle being obtuse is

$$\frac{\frac{\pi}{2}}{\frac{2\pi}{3}} = \frac{3}{4}.$$

Thus the probability of O belonging to the triangle is $\frac{1}{4}$, which is also the probability of the greatest angle being acute $(\leq \frac{\pi}{2})$.

Now let's go back to the general case. We see that these n points divide 2π into n angles, so the biggest angle is $\geq \frac{2\pi}{n}$. O is not in the convex hull if and only if the biggest angle is $> \pi$. Therefore the probability that O belongs to the convex hull of $A_1, ..., A_n$ is

$$1 - \frac{\pi}{2\pi - \frac{2\pi}{n}} = \frac{n-2}{2n-2}.$$