
A Brief Correction of 2016 Session

The answer may be wrong or have some errors.

Qusetion 1:
Find all functions f : R → R such that f(x+ y) ≤ f(x) + f(y) and f(x) ≤ x for all (x, y) ∈ R2.

A. First we see that f(0) ≤ 2f(0). Thus 0 ≤ f(0) ≤ 0 and we get f(0) = 0. Then we have
0 = f(0) ≤ f(x) + f(−x) ≤ 0 thus f(−x) = −f(x). But this means that f(−x) = −f(x) ≤ −x so
finally we get f(x) = x.

Qusetion 2:
Find all real numbers x such that 3x + 4x = 5x.

A. We know that x = 2 is a solution. Actually it is the only solution and it is easy to see by
rewriting the equation in another form:

∀x ∈ R∗, (
3

5
)x + (

4

5
)x = 1

Qusetion 3:
Given an a ∈ R∗

+, let Aa be the set{ n∑
i=0

ϵia
i; n ≥ 0, (ϵ0, ..., ϵn) ∈ {0, 1,−1}n+1

}
.

(a) For what values of a is the set Aa bounded above ?
(b) Assume a ≥ 2. Prove that Aa∩]− 1, 1[= ∅.

A. If a ≥ 1, then by taking (ϵ0, ..., ϵn) = (1, ..., 1), we see that Aa cannot be bounded. If a < 1, it
is easy to see that ∣∣∣∣ n∑

i=0

ϵia
i

∣∣∣∣ ≤ n∑
i=0

ai ≤ 1

1− a
.

Therefore Aa is bounded.
Now assume that a ≥ 2. By taking (ϵ0, ..., ϵn) = (0, ..., 0), we see that 0 ∈ Aa. Since the length of
]− 1, 1[ is 2, we conclude that Aa∩]− 1, 1[= {0}.

Qusetion 4:
Let Nn be the number of integers k ∈ {1, ..., n} such that the decimal expansion of 2k terminates with
12. Find the limit of Nn

n as n goes to infinity.

A. First we observe that 2k ≡ 12 mod 100 if and only if 2k−2 ≡ 3 mod 25. Euler’s theorem tells
us that 220 ≡ 1 mod 25 and we verify that 20 is the smallest non-zero positive solution to 2a ≡ 1

mod 25. Now we can conclude that
lim
n→∞

Nn

n
=

1

20
.
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Qusetion 5:
Given a k ∈ N∗, compute

∫ 1

0
(1− t)kdt. Use this computation to deduce that, for every n ∈ N∗,

n∑
k=1

(−1)k−1

k

(
n

k

)
=

n∑
k=1

1

k
.

A. It is easy to see that ∫ 1

0

(1− t)kdt =
1

k + 1
.

Therefore
n∑

k=1

(−1)k−1

k

(
n

k

)
=

n∑
k=1

(−1)k−1

(
n

k

)∫ 1

0

(1− t)k−1dt

=

∫ 1

0

1− tn

1− t
dt

=

n∑
k=1

1

k
.

Qusetion 6:
Consider 100 points in the plane, pairwise distinct. Prove that we can find a straight line that separates
the plane in two half-planes, such that each half plane contains exactly 50 points.

A. Let’s choose an origin, draw two perpendicular axes and represent each point by its coordinate
(xi, yi). Our goal is to find a unit vector (α, β) such that

∀i ̸= j, xiα+ yiβ ̸= xjα+ yjβ,

which means that each projection on this line is different. If such a unit vector exists, then clearly
it is possible to divide 100 points into two disjoint sets of 50 points. It is not difficult to see that
such a unit vector exists since there is only a finite amount of unit vectors verifying

∃i ̸= j, xiα+ yiβ = xjα+ yjβ.

Qusetion 7:
On a line, write down in increasing order all integers between 0 and n (where n ≥ 1). In a similar way as
the construction of the binomial numbers’ triangle, write on the second line all the sums of consecutive
integers from the first line. Keep going with the third line,... until there is only one integer left. What
is this last integer ?

A. Let’s denote Sn the last integer left. For each n, there are n + 1 lines in the triangle and we
can prove by induction that

∀n ≥ 1, Sn+1 = 2Sn + 2n.

Therefore a simple calculation gives us

∀n ≥ 1, Sn = n2n−1.

Qusetion 8:
Let a, b, c be the lengths of the three sides of a triangle with perimeter 1. Prove that

13

27
≤ a2 + b2 + c2 + 4abc ≤ 1

2
.
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A. Without lost of generality we may assume that a ≥ b ≥ c. Denote

f(a, b) = a2 + b2 + (1− a− b)2 + 4ab(1− a− b).

We see that
∂f

∂a
= 4a− 2 + 6b− 8ab− 4b2 = (2a+ b− 1)(2− 4b).

Therefore ∂f
∂a = 0 if and only if a = 1−b

2 or b = 1
2 . The same argument gives us ∂f

∂b = 0 if and only
if b = 1−a

2 or a = 1
2 .

If we have a ≥ 1
2 ≥ b, then we can see that f(a+b

2 , a+b
2 ) ≤ f(a, b) and we have 1

2 ≥ a+b
2 . If we have

1
2 ≥ a ≥ b, then f(a, b) is minimal when (a, b) = ( 13 ,

1
3 ) and in this case f(a, b) = 13

27 .
If we have 1

2 ≥ a ≥ b, then we can see that f(a, b) ≤ f( 12 ,
1
2 ) =

1
2 . If we have a ≥ 1

2 ≥ b, we can
also find that f(a, b) ≤ f( 12 ,

1
2 ) =

1
2 .

Qusetion 9:
Given n ∈ N∗, let Dn be the set of divisors of n, and d(n) be the number of divisors of n. Prove that

∀n ∈ N∗,
∑
k∈Dn

d(k)3 =

( ∑
k∈Dn

d(k)

)2

.

A. Let’s say n =
∏

i p
ai
i . Then simply we have,∑

k∈Dn

d(k)3 =
∑
(bi)

∏
i

(bi + 1)3

=
∏
i

( ai∑
k=0

(k + 1)3
)

=

(∏
i

(ai + 2)(ai + 1)

2

)2

=

( ∑
k∈Dn

d(k)

)2

Qusetion 10:
We throw infinitely many times a balanced dice with numbers 1 to 6. Let Xk ∈ {1, 2, ..., 6} be the
outcome of the k-th throw. For a given n ∈ N∗, let

Sn =

n∑
k=1

Xk

be the sum of the outcomes of the n first throws. For s ∈ N∗, let ps be the probability there exists n

such that Sn = s. Find the minimal value and maximal value of ps when s assumes all possible values
in N∗.

A. We can see that
pk =

1

6
(
7

6
)k−1, k = 1, 2, 3, 4, 5, 6

and

∀k ≥ 7, pk =
1

6

6∑
i=1

pk−i.

Then it is easy to see that
min
n∈N∗

{pn} = p1, max
n∈N∗

{pn} = p6.
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