
A Brief Correction of 2017 Session

The answer may be wrong or have some errors.

Qusetion 1:
Find all integers n ≥ 1 such that b√nc divides n.

A. Since b
√
nc ≤

√
n < b

√
nc+ 1, one has

(b
√
nc)2 ≤ n < (b

√
nc+ 1)2.

If b
√
nc divides n, then one must have n = (b

√
nc)2 or (b

√
nc)(b

√
nc + 1) or (b

√
nc)(b

√
nc + 2)

Therefore such an integer is k2 or k(k + 1) or k(k + 2).

Qusetion 2:
(a) Let A,B,C be three pairwise distinct points in the plane. Find the set of all points M in the plane,
such that

AC2 −AM2 = BC2 −BM2

(b) Let A,B,C be three pairwise distinct points in the plane; let P,Q,R be three points in the plane.
We let D1 be the straight line perpendicular to BC passing through P ; D2 is the line perpendicular
to CA passing through Q; D3 is the straight line perpendicular to AB passing through R. Prove that
D1, D2, D3 all intersect at a single point if, and only if,

BP 2 − PC2 + CQ2 −QA2 +AR2 −RB2 = 0

A. (a) Without loss of generality, one may suppose that A(a, b), B(c, b), C(0, 0),M(x, y). Then
one has

a2 + b2 − (x− a)2 − (y − b)2 = c2 + b2 − (x− c)2 − (y − b)2

or
(a− c)x = 0

The set of points in search is exactly the axis Y.
(b) We note M the intersection of D1, D2. Then one has

BP 2 − PC2 + CQ2 −QA2 = MB2 −MA2

= RB2 −RA2.

Thus M is on D3 and D1, D2, D3 all intersect at M .
For the other implication, we note M the point of intersection and sum up the three equations
defined in (a):

BP 2 − PC2 + CQ2 −QA2 +AR2 −RB2 = MB2 −MC2 +MC2 −MA2 +MA2 −MB2

= 0.
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Qusetion 3:
Let n ∈ N∗; let a1, ..., an be elements of R+, s =

∑n
i=1 ai. Prove that

n∏
i=1

(1 + ai) ≤
n∑

k=0

sk

k!

A. Since x 7→ lnx is convex, one has

1

n

n∑
i=1

ln(1 + ai) ≤ ln(1 + s

n
).

Therefore
n∏

i=1

(1 + ai) ≤ (1 +
s

n
)n

=

n∑
k=0

(
n

k

)
(
s

n
)k

≤
n∑

k=0

sk

k!

Qusetion 4:
Find all functions f : R → R such that ∀x ∈ R, f(x) ≤ x and

∀(x, y) ∈ R2, f(x+ y) ≤ f(x) + f(y)

A. By and immediate induction one has

∀n ∈ N,∀x ∈ R, f(nx) ≤ nf(x)

and therefore ∀n ∈ N,∀x ∈ R, f(x) = f(x+ 0) ≤ f(x) + nf(0), which implies f(0) = 0. Thus one
gets

∀x ∈ R, 0 = f(0) ≤ f(x) + f(−x) ≤ x+ (−x) = 0

so one must have ∀x ∈ R, f(x) = x.

Qusetion 5:
Let ABC be a triangle; let α, β, γ be the internal angles respectively at vertices A,B,C. Prove

cosα cosβ cos γ ≤ 1

8

A. The inequality is evident if the triangle is obtuse. If the triangle is acute, since x 7→ cosx is
convex on [0, π

2 ], one has

cosα cosβ cos γ ≤ (
cosα+ cosβ + cos γ

3
)3

≤ (cos(π
3
))3

=
1

8
.

Qusetion 6:
Let n ∈ N∗. Assume that n is not divisible by 2 nor 5. Prove that, in the decimal expansion of n20,
the hundreds digit is even, the tens digit is 0 and the ones digit is 1.
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A. Since n can be represented as 10k +m where k ∈ N and m = ±1,±3, one has

n20 =

20∑
i=0

(
20

i

)
(10k)im20−i

= m20 + 20 · (10k)m19 +

20∑
i=2

(
20

i

)
(10k)im20−i

≡ m20 + 20 · (10k)m19 mod 1000.

It is easy to see that (±1)20 ≡ 1 mod 1000 and (±3)20 ≡ 910 ≡ 1+100+45·100 ≡ 4601 mod 1000,
so one gets that the hundreds digit is even, the tens digit is 0 and the ones digit is 1.

Qusetion 7:
Let α ∈]0, 1[. Prove that there is no function f : [0, 1] → R such that

∀(x, y) ∈ [0, 1]2, (y ≥ x ⇒ f(y)− f(x) ≥ (y − x)α).

A. Suppose that such a function exists, then f(1)− f(0) is well defined. However, since

n−1∑
k=0

f(
k + 1

n
)− f(

k

n
) = f(1)− f(0)

≥
n−1∑
k=0

(
1

n
)α

= n1−α, ∀n ∈ N∗

one can easily see a contradiction. Therefore, such a function does not exist.

Qusetion 8:
Find the set of f ∈ C(R,R) not identically zero, such that

∀(x, y) ∈ R2, f(
√
x2 + y2) = f(x)f(y)

A. First one can see that ∀x ∈ R, f(|x|) = f(x)f(0) and f(0) = f(0)2. Thus f(0) = 1 and we only
need to study for all x ≥ 0. An immediate induction gives us

∀n ∈ N,∀x ∈ R, f(
√

x2

2n
) = f(x)

1
2n .

Therefore, ∀x ∈ R, f(x) 6= 0. We define ∀x ∈ R, g(x2) = ln(f(
√
x2)) and we have

∀(x, y) ∈ R2, g(x2 + y2) = g(x2) + g(y2).

An immediate induction gives us

∀n ∈ N,∀x ∈ R, g(nx2) = ng(x2) and g(
x2

2n
) =

g(x2)

2n
.

Thus, we can restrict our study on [0, 1]. Since each number in [0, 1] can be represented as a binary
number (we talk about density)and we have g( 1

2n ) =
g(1)
2n , we have ∀x ∈ R, g(x) = g(1)x because

g is continuous. Finally, we have f(x) = eαx
2 .

Qusetion 9:
We denote by |X| the number of elements of a finite set X. Let A1, .., An be finite subsets of a set E.
For an x in E, denote by d(x) the number of indices i ∈ {1, ..., n} such that x ∈ Ai.
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(a) Prove that

|
n∪

i=1

Ai| =
n∑

i=1

∑
x∈Ai

1

d(x)

(b) Then deduce that

|
n∪

i=1

Ai| ≥
n∑

i=1

|Ai|2∑n
j=1 |Ai ∩Aj |

A. (a)
n∑

i=1

∑
x∈Ai

1

d(x)
=

∑
x∈(

∪n
i=1 Ai)

n∑
i=1

1

d(x)

=
∑

x∈(
∪n

i=1 Ai)

1

= |
n∪

i=1

Ai|.

(b) We define ∀(i, j) ∈ {1, ..., n}2, Ii,j(x) = 1 if x ∈ Ai ∩ Aj and 0 if not. Then on can see that
∀x ∈ Ai, d(x) =

∑n
j=1 Ii,j(x) and ∑

x∈Ai

d(x) =
∑
x∈Ai

n∑
j=1

Ii,j(x)

=

n∑
j=1

∑
x∈Ai

Ii,j(x)

=

n∑
j=1

|Ai ∩Aj |.

By Cauchy inequality, one has
n∑

j=1

|Ai ∩Aj |
∑
x∈Ai

1

d(x)
≥ |Ai|2.

Therefore,

|
n∪

i=1

Ai| ≥
n∑

i=1

|Ai|2∑n
j=1 |Ai ∩Aj |

.

Qusetion 10:
Let E be a finite set, n ≥ 2 an integer; let A1, ..., An and B1, ..., Bn be subsets of E. Assume for every i

in {1, .., n}, Ai∩Bi = ∅ and if i and j are distinct elements of {1, .., n}, then (Ai∩Bj)∪(Aj∩Bi) 6= ∅.
Given a p ∈ [0, 1], prove that

n∑
i=1

p|Ai|(1− p)|Bi| ≤ 1.

[One could introduce Bernoulli-type random variables.]

A. Let E = {1, 2, ..., k}. We have k independent coin such that each time we throw it, the
probability of having the face is p and that of having the back is (1 − p). For j = 1, ..., n, we
denote by Wj the event ”for all i in Aj , the ith coin is face and for all i in Bj , the ith coin is back”.
Therefore the probability of having Wj is p|Aj |(1− p)|Bj |. In addition, if i 6= j, the probability of
having at the same time Wi and Wj is 0 since (Ai ∩Bj) ∪ (Aj ∩Bi) 6= ∅ and a coin cannot be at
the same time face and back. Thus, we have

n∑
i=1

p|Ai|(1− p)|Bi| ≤ the sum of the probability of each possible event = 1.
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